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A2 B2 TEORIA 
 

 

Aquí tienes unas formulas importantes que tienes que tener en cuenta: 

 

𝐵𝐸𝑁𝐸𝐹𝐼𝐶𝐼𝑂𝑆 = 𝐼𝑁𝐺𝑅𝐸𝑆𝑂𝑆 − (𝐺𝐴𝑆𝑇𝑂𝑆) 

 

𝐼𝑁𝐺𝑅𝐸𝑆𝑂𝑆 = 𝑃𝑅𝐸𝐶𝐼𝑂	𝑈𝑁𝐼𝐷𝐴𝐷	𝑥	𝑈𝑁𝐼𝐷𝐴𝐷𝐸𝑆 

 

 

CALCULO DE PARAMETROS: 

 

La función pasa por el punto (𝐴, 𝐵) → 𝑓(𝐴) = 𝐵 

La función tiene un MAX, min en… 9 → (𝐴, 𝐵) :
𝑓(𝐴) = 𝐵
𝑓!(𝐴) = 0

→ 𝑥 = 𝐴 → 𝑓!(𝐴) = 0
 

 

La función tiene un Punto de Inflexión en … 9 → (𝐴, 𝐵) :
𝑓(𝐴) = 𝐵
𝑓!′(𝐴) = 0

→ 𝑥 = 𝐴 → 𝑓′′(𝐴) = 0
 

La función tiene una recta tangente paralela a la función  𝑦 = 𝑚𝑥 + 𝑛   en … 

9 → (𝐴, 𝐵) :
𝑓(𝐴) = 𝐵
𝑓!(𝐴) = 𝑚

→ 𝑥 = 𝐴 → 𝑓!(𝐴) = 𝑚
 

 

 

 

 

 

 

La función de gastos 
tiene que estar entre 
paréntesis  
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MÁXIMO, MÍNIMO, PUNTO INFLEXIÓN, CRECIMIENTO, DECREMIMIENTO, CONCAVA, CONVEXA 
… 

𝑓!(𝑥) = 0	, con este calculo obtendremos los valores de los posibles MÁXIMOS y mínimos de la 
función. 

Es decir, 𝑥"	, 𝑥#	, …	𝑥$ 

Tenemos dos formas de reconocer si esos valores son máximos o mínimos: 

• Representación en la recta real 
 

Los valores que hemos obtenido de igualar a cero la primera derivada, los 
representamos en la recta, cogemos un valor de cada intervalo, y lo sustituimos en la primera 
derivada.  

𝑓!(𝑥$) > 0 → 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑜	𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒	(𝐼𝐶) 

𝑓!(𝑥$) < 0 → 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑜	𝑑𝑒𝑐𝑟𝑒𝑐𝑖𝑒𝑛𝑡𝑒	(𝐼𝐷) 

Cuando coincida un IC con un ID, tendremos un MÁXIMO y cuando coincida un ID con 
un IC obtendremos un mínimo. 

 

 

• Con la segunda derivada 𝑓′′(𝑥) 
 

𝑓!!(𝑥$) > 0 → 𝑚í𝑛𝑖𝑚𝑜 

𝑓!!(𝑥$) < 0 → 𝑀Á𝑋𝐼𝑀𝑂 

 

𝑓!!(𝑥) = 0 , con este calculo obtenemos los posibles puntos de inflexión.  

Los valores los representamos en la recta real para coger un valor de cada intervalo y sustituirlo 
en la segunda derivada. 𝑓!!(𝑥%) < 0 → 𝑐𝑜𝑛𝑣𝑒𝑥𝑎			; 			𝑓!!(𝑥%) > 0 → 𝑐𝑜𝑛𝑐𝑎𝑣𝑎. 

Cuando existe un cambio en la curvatura de la función tenemos un punto de inflexión. 
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¿CÓMO SE CALCULAN LAS ASÍNTOTAS? 

 

• Asíntota Vertical 
Tenemos que calcular el domino de la función con la que estamos trabajando, todos los 
puntos que están fuera del dominio son asíntotas verticales y tenemos que calcular los 
limites laterales con dichos valores (puntos). 

lim
&'&!"

𝑓(𝑥) 							𝑦					 lim
&→&!#

𝑓(𝑥) 

• Asíntota Horizontal 
Tenemos que calcular los limites en el infinito y en el menos infinito, es decir,  

lim
&→)

𝑓(𝑥)					𝑦					 lim
&→')

𝑓(𝑥) 

 
• Asíntota Oblicua 

Para este calculo tenemos dos procedimientos dependiendo de cómo sea la función con la 
que estemos trabajando. 

a) 𝑦 = *(&)
-(&)

→ 𝑝𝑎𝑟𝑎	𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑟	𝑙𝑎	𝐴. 𝑂.→ 		𝑓(𝑥)					𝑔(𝑥) 
 

																																																																																													𝑝(𝑥) → 𝑝𝑜𝑟	𝑡𝑎𝑛𝑡𝑜	𝑦 = 𝑝(𝑥)	𝑒𝑠	𝑙𝑎	𝐴. 𝑂. 
 

b) Por el contrario, si trabajamos con una función que no sea una división de dos 
polinomios: 

𝐴. 𝑂.→ 𝑦 = 𝑚𝑥 + 𝑛			𝑑𝑜𝑛𝑑𝑒,	 
 

𝑚 = lim
&→±)

𝑓(𝑥)
𝑥

 

 
𝑛 = lim

&→)
𝑓(𝑥) − 𝑚𝑥 

 

Algo muy importante, si existe asíntota horizontal no puede existir asíntota oblicua, por el 
contrario, si no existe asíntota horizontal puede existir asíntota oblicua. 
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La derivada de una suma o resta de funciones es la suma o resta de sus derivadas: 

𝑦 = 𝑓(𝑥) ± 𝑔(𝑥) → 𝑦′ = 𝑓′(𝑥) ± 𝑔′(𝑥) 

La derivada de una multiplicación: 

𝑦 = 𝑘 ∙ 𝑥 → 𝑦′ = 𝑥 

𝑦 = 𝑢 ∙ 𝑣 → 𝑦′ = 𝑢′ ∙ 𝑣 + 𝑢 ∙ 𝑣′ 

La derivada de una división: 

𝑦 =
𝑘
𝑢
→ 𝑦′ =

−𝑘𝑢′
𝑢#

 

𝑦 =
𝑢
𝑣
→ 𝑦′ =

𝑢′ ∙ 𝑣 − 𝑢 ∙ 𝑣′
𝑣#

 

 

 

 

   Función Derivada 

Tipo exponencial 𝑦 = 𝑒*(&) 𝑦′ = 𝑒*(&) ⋅ 𝑓′(𝑥) 
𝑦 = 𝑎*(&) 𝑦′ = 𝑎*(&) ⋅ 𝑓′(𝑥) ⋅ 𝑙𝑛	𝑎 

 Función Derivada 
Tipo potencial 𝑦 = 𝑘 ∙ 𝑓(𝑥)$ 𝑦′ = 𝑛 ∙ 𝑘 ⋅ 𝑓(𝑥)$'" ⋅ 𝑓′(𝑥) 

 Función Derivada 

Tipo logarítmico 
𝑦 = 𝑙𝑛	𝑓(𝑥) 𝑦′ =

𝑓′(𝑥)
𝑓(𝑥)

 

𝑦 = 𝑙𝑜𝑔/𝑓(𝑥) 𝑦′ =
𝑓′(𝑥)
𝑓(𝑥)

⋅
1
𝑙𝑛	𝑎

 

 Función Derivada 
Tipo seno 𝑦 = 𝑠𝑒𝑛	𝑓(𝑥) 𝑦′ = 𝑓′(𝑥) ∙ 𝑐𝑜𝑠	𝑓(𝑥) 

 Función Derivada 
Tipo coseno 𝑦 = 𝑐𝑜𝑠	𝑓(𝑥) 𝑦′ = −𝑓′(𝑥) ∙ 𝑠𝑒𝑛	𝑓(𝑥) 

 Función Derivada 

Tipo tangente 𝑦 = 𝑡𝑔	𝑓(𝑥) 𝑦′ =
𝑓′(𝑥)

𝑐𝑜𝑠#𝑓(𝑥)
 

 Función Derivada 

Tipo cotangente 𝑦 = 𝑐𝑡𝑔	𝑓(𝑥) 𝑦′ =
−1

𝑠𝑒𝑛#𝑓(𝑥)
⋅ 𝑓′(𝑥) 

 Función Derivada 

Formaciones 
Arcos 

𝑦 = 𝑎𝑟𝑐	𝑠𝑒𝑛	𝑓(𝑥) 𝑦′ =
1

`1 − 𝑓#(𝑥)
⋅ 𝑓′(𝑥) 

𝑦 = 𝑎𝑟𝑐	𝑐𝑜𝑠	𝑓(𝑥) 𝑦′ =
−1

`1 − 𝑓#(𝑥)
⋅ 𝑓′(𝑥) 

𝑦 = 𝑎𝑟𝑐	𝑡𝑔	𝑓(𝑥) 𝑦′ =
1

1 + 𝑓#(𝑥)
⋅ 𝑓′(𝑥) 
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INTEGRALES DEFINIDAS: 

Nos planteamos el problema de hallar el área de la región limitada por la curva 𝑦 = 𝑓(𝑥), el eje 
de abscisas y las rectas 𝑥 = 𝑎	𝑦	𝑥 = 𝑏.  

 

 

 
 
 
 
 
 
 
 

 

b 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥)/0 = 𝐹(𝑏) − 𝐹(𝑎)
0

/
																											b 𝑓(𝑥)𝑑𝑥 = 𝐹(𝑥)/0 = |𝐹(𝑏) − 𝐹(𝑎)|

0

/
 

 

 

En otros casos nos planteamos calcular el área encerrada por dos funciones: 

  

b 𝑓(𝑥)	𝑑𝑥 + b 𝑓(𝑥)		𝑑𝑥 =
1

0

0

/
 

[𝐹(𝑏) − 𝐹(𝑎)] + [|𝐹(𝑐) − 𝐹(𝑏)|] 

b 𝑓(𝑥) − 𝑔(𝑥)	𝑑𝑥 + b 𝑔(𝑥) − 𝑓(𝑥)		𝑑𝑥 =
1

0

0

/
 

b 𝑅(𝑥)	𝑑𝑥 + b 𝑆(𝑥)		𝑑𝑥 =
1

0

0

/
 

 

 

[𝑅(𝑏) − 𝑅(𝑎)] + [𝑅(𝑐) − 𝑅(𝑏)] 

𝑅(𝑥) = 𝑓(𝑥) − 𝑔(𝑥) 

𝑆(𝑥) = 𝑔(𝑥) − 𝑓(𝑥) 

a

 

a 

b b c 

c 
𝑓(𝑥) 

𝑓(𝑥) 

𝑔(𝑥) 

a 

a 

b 

b 
𝑓(𝑥) 

𝑓(𝑥) 

Fíjate que cuando la función esta por debajo del 
eje OX debemos tener en cuenta en valor 
absoluto. 
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La integral que mas se utiliza cuando hacemos estos ejercicios de selectividad es: 

 

b𝑓!(𝑥) ∙ [𝑓(𝑥)]$ =
[𝑓(𝑥)]$9"

𝑛 + 1
+ 𝐶 

 

De todas formas, aquí te dejo el resto de las integrales para que las tengas en cuenta: 

 

 

 

 

Forma compuesta: 

b𝑘	𝑑𝑥 = 	𝑘𝑥 + 𝑐 

b𝑓(𝑥)$ ⋅ 𝑓′(𝑥)𝑑𝑥 =
𝑓(𝑥)$9"

𝑛 + 1
	+ 	𝑐 

b
𝑓′(𝑥)
𝑓(𝑥)

𝑑𝑥 = 𝑙𝑛	|𝑓(𝑥)| + 𝑐 

b𝑒*(&) ⋅ 𝑓′(𝑥)	𝑑𝑥 = 𝑒*(&) + 𝑐 

b𝑎*(&) ⋅ 𝑓′(𝑥) 	𝑑𝑥 =
𝑎*(&)

𝑙𝑛	𝑎
	+ 𝑐 

b𝑠𝑒𝑛	(𝑓(𝑥)) ⋅ 𝑓′(𝑥)	𝑑𝑥 = −𝑐𝑜𝑠	𝑓(𝑥) + 𝑐 

b𝑓′(𝑥) ⋅ 𝑐𝑜𝑠	(𝑓(𝑥))	𝑑𝑥	 = 𝑠𝑒𝑛	𝑓(𝑥) + 𝑐 

b
𝑓′(𝑥)

𝑐𝑜𝑠#𝑓(𝑥)
𝑑𝑥 = 𝑡𝑔	𝑓(𝑥) + 𝑐 

b
𝑓′(𝑥)

𝑠𝑒𝑛#𝑓(𝑥)
𝑑𝑥 = −𝑐𝑜𝑡𝑔	𝑓(𝑥) + 𝑐 

b
𝑓′(𝑥)

`1 − 𝑓(𝑥)#
𝑑𝑥 = 𝑎𝑟𝑐	𝑠𝑒𝑛	𝑓(𝑥) + 𝑐 		= −𝑎𝑟𝑐	𝑐𝑜𝑠	𝑓(𝑥) + 𝑐 

b
𝑓′(𝑥)

1 + 𝑓(𝑥)#
𝑑𝑥 = 𝑎𝑟𝑐𝑡𝑔	𝑓(𝑥) + 𝑐 


