APLICACION DE LAS DERIVADAS, CONTINUIDAD, DERIVABILIDAD, REPRESENTAR FUNCIONES
TEORIA

A2 B2 TEORIA

Aqui tienes unas formulas importantes que tienes que tener en cuenta:

BENEFICIOS = INGRESOS — (GASTOS)

\ La funcién de gastos

INGRESOS = PRECIO UNIDAD x UNIDADES tiene que estar entre

paréntesis

| CALCULO DE PARAMETROS:

La funcién pasa por el punto (4,B) - f(A) =B

fA)=B
La funcion tiene un MAX, min en... - (4.B) {f’(A) =0
»x=A-f'(A)=0

F(4) =B
> @B g

»x=A-f"(4)=0

La funcidn tiene un Punto de Inflexién en ...

La funcidn tiene una recta tangente paralela a la funcion y=mx+n en

f4)=5
=@ {5

>x=A-f"(A)=m
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I MAXIMO, MINIMO, PUNTO INFLEXION, CRECIMIENTO, DECREMIMIENTO, CONCAVA, CONVEXA

f'(x) = 0, con este calculo obtendremos los valores de los posibles MAXIMOS y minimos de la
funcioén.

Es decir, x1 , x5, ... X

Tenemos dos formas de reconocer si esos valores son maximos o minimos:

e Representacién en la recta real

Los valores que hemos obtenido de igualar a cero la primera derivada, los

representamos en la recta, cogemos un valor de cada intervalo, y lo sustituimos en la primera
derivada.

f'(x,) > 0 — intervalo creciente (IC)
f'(x,) < 0 — intervalo decreciente (ID)

Cuando coincida un IC con un ID, tendremos un MAXIMO y cuando coincida un ID con
un IC obtendremos un minimo.

e Con lasegunda derivada f"'(x)

f"(xn) > 0 - minimo

" (x,) <0 — MAXIMO

f"(x) =0, con este calculo obtenemos los posibles puntos de inflexion.

Los valores los representamos en la recta real para coger un valor de cada intervalo y sustituirlo
en la segunda derivada. f"'(x,,) < 0 - convexa ; f"(xp,) > 0 — concava.

Cuando existe un cambio en la curvatura de la funcidn tenemos un punto de inflexion.
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] :COMO SE CALCULAN LAS ASINTOTAS?

e Asintota Vertical
Tenemos que calcular el domino de la funcién con la que estamos trabajando, todos los

puntos que estan fuera del dominio son asintotas verticales y tenemos que calcular los
limites laterales con dichos valores (puntos).

lim f)  y  lim ()

xX—xq
e Asintota Horizontal
Tenemos que calcular los limites en el infinito y en el menos infinito, es decir,

lim f) y  lim f(x)

e Asintota Oblicua
Para este calculo tenemos dos procedimientos dependiendo de cémo sea la funcién con la

gue estemos trabajando.

a) y= % - para calcular la A.0.—» f(x) | g(x)

p(x) - por tantoy = p(x) es la A.O.

b) Por el contrario, si trabajamos con una funcidn que no sea una divisidon de dos
polinomios:
A.0.- y=mx+n donde,

n = lim f(x) — mx
X—00

Algo muy importante, si existe asintota horizontal no puede existir asintota oblicua, por el
contrario, si no existe asintota horizontal puede existir asintota oblicua.
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Funcién Derivada
Tipo potencial | y =k f(x)" y'=n-k-f)" - f'(x)
Funcién Derivada
— f® I — pf (). £
. . y=e y=e f(x)
Tipo exponencial V= a/® Y =a/® . f(x) Ina
Funcién Derivada
, ')
y =Inf(x) Y =70
Tipo logaritmico oo 1
Y = 1090/ () Y =F Ina
Funcién Derivada
Tipo seno y = sen f(x) y' = f'(x) - cos f(x)
Funcién Derivada
Tipo coseno y = cos f(x) y' =—f'(x) - sen f(x)
Funcién Derivada
. _ . )
Tipo tangente y=tg f(x) y = m
Funcién Derivada
Tipo cotangente | y = ctg f(x) y' = m f(x)
Funcién Derivada
RN S
y = arc sen f(x) )’:\/i' X
1-f%(x)
Formaciones " -1 £'(x)
N y = arc cos f(x) y = T2 700
A 1 !
y=arctg f(x) y=m'f(x)

La derivada de una suma o resta de funciones es la suma o resta de sus derivadas:
y=f)tgx) >y =fx)*tg'(x
La derivada de una multiplicacién:
y=kx->y =x
y=uv->y=u-v+u-v
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I INTEGRALES DEFINIDAS: ‘

Nos planteamos el problema de hallar el area de la regién limitada por la curva y = f(x), el eje
de abscisasy lasrectasx = ayx = b.

2 f(x)
///—/ g : : a b ;
J——
b
b b
[ r@ix = Fet = F&) - F@) [ r@ix = F@t =17 ) - Fe@)

a

Fijate que cuando la funcién esta por debajo del
eje OX debemos tener en cuenta en valor
absoluto.

En otros casos nos planteamos calcular el area encerrada por dos funciones:

b c
[ 76 = g0 ax+ fb 9() — f(x) dx =

’ ’ /)
f f(x)dx +f f(x) dx = R(x) = f(x) —gx)
a b

S(x) =gx) — f(x)

R(x) dx + fCS(x) dx =
b

[F(b) = F(@)] + [IF(c) = F(b)I]

: [ g(x)
f() |
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La integral que mas se utiliza cuando hacemos estos ejercicios de selectividad es:

_feaImt

[re rer =20+ c

De todas formas, aqui te dejo el resto de las integrales para que las tengas en cuenta:

Forma compuesta:

fkdx= kx +c

f( )n+1
ntl

=In|f)l+c

[ reor raax -
f'(x)
0
fef(x) Cf(x) dx = ef® ¢
ic)
faf(x) f'(x) dx = I a +c
fsen (fF)) - f'(x)dx = —cos f(x) +¢

ff’(x) ~cos (f(x))dx =senf(x)+c

S
coszf(x) dx=tgfey+ec
se]rCLZ(;zx) Tt
ff,(—x)dx = arcsen f(x) +c¢ = —arccos f(x) +c
JI-f(x)?
SO e aretg foo) +
T+ £ () ’
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